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Abstract —
sion to the nth root parley distributed detection al-

In this paper, we propose an exten-

gorithm of Swaszek and Willet. Instead of making a
single “hard” decision at each sensor node, a two bit
quantizer is used to choose the hypothesis and also to
provide a confidence measure of this decision. These
“soft” decisions are broadcast to all nodes, and they
are used to create a stopping rule that reduces the
number of parleys. For the Bayesian criterion, the
probability of error is unchanged, and it is equal to
that of a central processor; for the Neyman-Pearson
criterion, the receiver operating curve is essentially
the same as that of a central processor. The perfor-
mance is also compared to that obtained using one bit
decision makers and the majority fusion rule. Simu-
lation results are provided for the Gaussian shift in
mean problem assuming an ideal channel and the bi-
nary symmetric channel.

I. INTRODUCTION

With the coming availability of low cost, short range radios
along with advances in wireless networking, it is expected that
smart sensor networks will become commonly deployed [1]. In
these networks, each node will be equipped with a variety of
sensors, such as acoustic, seismic, infrared, etc. These nodes
may be organized in clusters such that a locally occurring
event can be detected by most, if not all, the nodes in the
cluster. Each node will have sufficient processing power to
make a decision, and it will be able to broadcast this decision
to the other nodes. One node may act as the cluster master,
and it may also contain a longer range radio; however, we
presently do not need to assume this.

While the design of the physical and medium access con-
trol (MAC) layers are important considerations in a wireless
smart sensor network, in this paper we focus only on the dis-
tributed detection problem. The goal is to develop simple,
efficient algorithms that fuse the local decisions into a global
decision for the cluster. This decision can then be transferred
out of the cluster over a multi-hop wireless network, perhaps
using mobile ad-hoc network (MANET) routing algorithms.
For power consumption and low probability of intercept con-
siderations, it is desired that the number of bits transmitted
among the local nodes be minimized. At the same time, the
global probability of error must also be minimized, preferably
allowing the cluster to achieve the same probability of error
as a central processor.

The proposed algorithm is an extension of the nth root par-
ley method of Swaszek and Willet [2]. It is important to point

0This work was supported by the Advanced Research and De-
velopment Activity (ARDA) under contract number 706400.

out that their algorithm does provide the same probability of
error as an optimal central processor. This is done by multi-
ple iterations, called parleys, of hard decision data from each
local node to all its neighbors. One advantage of their method
is that there is no single fusion center that can be a point of
failure. However, a potential disadvantage is that a number
of iterations must be completed before a consensus decision is
achieved.

Our basic idea is to use a two bit quantizer to send soft de-
cisions from each node to all the others. One bit determines
the hypothesis chosen, while the other one indicates how close
the likelihood ratio is to the threshold. The same a posteriori
probability calculations from the original algorithm are per-
formed, but now the requirement of a consensus is relaxed.
Given N nodes, the algorithm requires that only some propor-
tion of these nodes agree on the same hypothesis, while the
other nodes must all have a decision in the quantization bin
closest to the threshold. The simulation results show that the
number of parleys can be substantially reduced, with essen-
tially no effect on the probability of error.

In the next section, the basic parley algorithm is briefly
described. Section III discusses the quantization and the se-
lection of the early stopping rules, and Section IV provides
the analytical performance results of a central detector for
the Gaussian shift in mean problem. Section V contains the
simulation results, while Section VI provides conclusions and
future areas of study.

II. PARLEY ALGORITHM

For completeness, we describe the binary hypothesis parley
algorithm given in [2]. Assume each of N sensors measures a
phenomenon and computes a likelihood function A(r;), for

each sensor 2 = 1,---, N. The optimum centralized test is
given by
N Iil
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where X is a threshold. The decentralized test performed at
each sensor during each iteration is given by

Uim =1
>
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In Eq. (2), ui,m is the hard decision and ;. is the local
threshold, both for the ith sensor at iteration m. These thresh-
olds need to be determined.

A consensus occurs if all nodes choose the same hypothesis.
When this happens, the product of all the local likelihood
functions is either greater or less than the product of the local



thresholds. The main concept of the parley algorithm is given
by the following proposition. “If the thresholds at each round
of the parley satisfy vazl Ai,m = A, a consensus decision, if
reached, matches the centralized decision exactly” [2]. From
this, one can show that the optimal local thresholds are

N
Pr(sg,m < A(rg) < tgm|Ho) 1/n
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Here, s, and tg,,, are the minimum and maximum values
of A(rk), given the past hard decisions ug,,,n =1,---,m —1.

Given the probability density functions (pdfs) for each hy-
pothesis, one can compute the pdfs of the likelihood ratios
conditioned on each hypothesis, and use this to select A. De-
tails are given below. The minimum and maximum values
are chosen for each node’s likelihood function, and the parley
process begins. At each iteration, the likelihood function at
each node is computed and compared to the local threshold.
This threshold is calculated using the a posterior: probabilities
determined by numerically integrating the pdfs of the other
nodes’ likelihood functions between the minimum and maxi-
mum values, as shown in Eq. (3). A hard decision is made,
and this value is then broadcast to all other nodes. Since each
node knows the previous minimum and maximum values, it
can reduce these values for the next iteration by using the
single information bit received from each of the other sensor
nodes.

ITI. QUANTIZATION AND EARLY STOPPING RULES

Figure 1 shows the pdfs of a likelihood function, A(r;), con-
ditioned on the two hypotheses. Consider setting the thresh-
old, say, Ai,;m, = 1; then, it is straight-forward to numerically
calculate Pr(ui,m = 0) and Pr(u;,m) = 1 for each hypothesis.
As an alternative, one can quantize the likelihood function
using multiple bits. Since there is more information retained,
performance should not be decreased. The question arises as
to how to determine the quantizer thresholds and reproduc-
tion values to obtain this good detection performance. In gen-
eral, the design is dependent on the fusion rule used, as well
as the particular system architecture [3], ¢f. pages 107-110.
For example, Longo et al. [4] suggest using the Bhattacharyya
distance of the joint index space as a design criterion.

One needs to be somewhat careful, because the original nth
root parley algorithm achieves the same probability of error
of the central detector. While we want to reduce the number
of iterations required for consensus, it is mandatory that the
error performance remain essentially constant. To do this, we
use a two bit quantizer where the first bit partitions the deci-
sion space identically to the original algorithm. That is, the
thresholds A;,., are retained, and above each one corresponds
to the decision for H;, while below is the decision for Hy. The
second bit is used to segment each of these regions in two. For
example in the Gaussian shift in mean problem, define a scale
factor SF such that the other two thresholds are given by

)\i m
im,L = S—’F (4)
)\i,m,H = )\i,m x SF. (5)

Since each received two bit ;. still allows one to infer the a
posteriori probabilities, Eq. (3) can still be used.
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Figure 1: Probability density functions of the likelihood
function conditioned on each hypothesis. These are de-

noted A(r;|Hp) and A(r;|Hy), respectively.

To reduce the number of parleys, while maintaining a good
probability of error, one needs to develop an early stopping
rule. While one could conceive of using maximum entropy
or other information-theoretic ideas, we choose some simple
heuristics that lead to good results. Firstly, we relax the con-
dition that all N nodes are in consensus to the rule that X x NV
nodes agree on the same hypothesis, where X is typically in
the range of 0.6 to 0.8. Secondly, if X x N nodes agree on
hypothesis zero and the remaining nodes have likelihood ra-
tios in the range Ai,;m < A(r;) < Aijm,m, then the algorithm
stops and says that the hypothesis is zero. Conversely, if X x N
nodes agree on hypothesis one and the remaining nodes satisfy
Xiym,r. < A(r;) < Ai,m, the algorithm stops and says that the
hypothesis is one. Otherwise, the next parley is conducted us-
ing the new a posterior: probabilities. Note that in Figure 1,
P’l‘{)\i,m,L < A(ri|H1) < )\i,m} = P’I"{)\i,m < A(T¢|H0) <
Ai,m,H}; when )\i,m = 1.0.

IV. PERFORMANCE OF CENTRAL DETECTOR
The Gaussian shift in mean problem is a useful starting
point for performance comparisons, since it is quite easy to
calculate the probability of error for the central detector. This
error is a lower bound on the performance of any distributed
detection algorithm. The hypotheses are given by

(r) = 1 ox —(r+s)?
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where the mean is s for hypothesis one and —s for hypothesis
zero. Alternatively, one can shift these so that for hypothesis
zero the mean is zero and for hypothesis one the mean is m =
2s. Defining the likelihood function [5] according to
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it is straight-forward to show that a sufficient statistic is

N Hy
1 > lnp d
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where d := vV Nm/o, and 7 depends on the costs and a priori
probabilities. After a little manipulation, one can show that
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To calculate the probability or error, Pr(e), for the central
detector, let us assume that a prior: probabilities of the two
hypotheses are equal. Then, Pr(e) = erfe.(lnn/d + d/2),
where

) 1 ,
erfe«(z) = /m \/—2_71' exp(—z”/2) dz. (11)

Table 1 shows the probability of error as a function of the
number of sensors and the distance between the two density
functions.

Sensors m = 2s
N | 0.2 0.5 1.0
1| 0.460 0.401 0.309
2 | 0.444 0.362 0.240
51 0.412 0.288 0.132
10 | 0.376 0.215 0.0569
20 | 0.327 0.132 0.0127
50 | 0.240 0.0385 2.03 x10~¢
100 | 0.159 6.21x10°3 2.87x107"
200 | 0.079 2.03 x 10* ~0

Table 1: Analytical computation of probability of error
for central detector.

For the Neyman-Pearson criterion, one can also calculate
the probability of detection Pp as a function of the proba-
bility of false alarm, Pr, for a given number of sensors. The
equations are given by [5] Pp = erfe«(Inn/d — d/2), and
Pr =erfe.(Inn/d+d/2). Figure 2 shows the receiver operat-
ing curves for various numbers of sensors when m = 2s = 0.5.

V. SIMULATION RESULTS

BAYESIAN CRITERION

Table 2 shows the average number of parleys as a function
of the number of nodes for the case m = 2s = 0.5. The proba-
bility of error for each row is the worst case, usually obtained
by the two bit algorithm when SF = 1.5. In all cases, the
error probability is essentially identical for the one bit and
two bit algorithms, and these numbers are very close to the
optimal centralized detector error probabilities given in Ta-
ble 1. Please note that the number of parleys for the original
one bit algorithm is duplicated, since there is no early stop-
ping rule for this case. For the cases of 100 and 200 sensors,
the probability of error is very slightly lower than the central
processor’s; these results are most likely due to the relatively
small number of trials.

Consider a cluster of 20 sensors. The one bit algorithm
requires 7.35 iterations on average, for a total of approximately
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Figure 2: Analytical receiver operating curves (ROC) for
the Gaussian shift in means problem. m = 0.5.

147 bits. The extended algorithm, stopping with 12 nodes
in agreement, needs 2.71 iterations for a total of 109 bits.
Perhaps more importantly, the number of channel accesses
is reduced from 147 to 54. This will certainly simplify the
design of the MAC layer, as well as decrease the probability
of intercept. It also reduces the decision time, although this
may not be particularly relevant. For a fifty node network,
the total number of bits is reduced from 509 to 310, and the
average number of channel accesses from 509 to 155.

In all of the cases above, the increase in the probability of
error caused by using the 0.6 * NV stopping rule instead of the
0.8 * N rule is almost negligible. The number of parleys can
be even further reduced, if one is willing to tolerate a slight
increase in the probability of error; this can be accomplished
by increasing SF' to values greater than 1.5. For comparison
purposes, Table 3 shows the probability of error for a dis-
tributed detection system using the parallel architecture and
a majority fusion rule. In this case, each sensor uses the same
threshold and makes a binary decision, which is transmitted
to the fusion center. While it is well known that using the
same threshold is sub-optimal, the probability of error still
approaches zero as the number of sensors approaches infin-
ity [6, 7]. ! Please note that for the finite number of sensors
considered, the two bit parley algorithm clearly achieves bet-
ter performance.

Now consider the more difficult case where m = 2s = 0.2,

1 Alternatively, one could use the optimal thresholds for the par-
allel fusion case. However, determining them requires solving a
system of coupled non-linear equations, which grows with the num-
ber of sensors. Still, the results will not be as good as the parley
algorithm.



Sensors  Pr(e) || 1 bit SF

N 1.1 125 1.5
5 0.2888 || 4.00 | 3.06 2.70 2.50
10 0.2152 || 5.61 | 401 3.59 3.43
20 0.1352 || 7.35 | 4.63 4.08 3.97
50 0.0404 || 10.18 | 5.22 4.27 4.16
100 0.0060 || 12.52 | 5.72 4.28 4.10
200 0.0002 || 15.07 | 6.39 4.42 4.10
5 0.2928 | 4.00 | 2.72 2.09 1.63
10 0.2176 | 5.61 | 3.63 2.79 2.22
20 0.1353 || 7.35 | 4.32 3.27 2.71
50 0.0405 || 10.18 | 5.10 3.65 3.09
100 0.0060 || 12.52 | 5.70 3.87 3.30
200 0.0002 || 15.07 | 6.39 4.22 3.56

Table 2: Comparison of the average number of parleys
of the original algorithm [2] and the two bit parley algo-
rithm. The top half is for the 0.8 x IV stopping rule, while
the bottom half is for the 0.6 * N stopping rule. SF de-
termines the quantization regions. m = 2s = 0.5. 50,000
trials per data point.

Sensors Pr(e)

NIm=02 m=0.5

5 | 0.4255 0.3193

10 | 0.4026 0.2687

20 | 0.3670 0.1925

50 | 0.2914 0.0821

100 | 0.2151 0.0231
200 | 0.1314 0.0022

Table 3: Probability of error for a parallel fusion archi-
tecture using identical thresholds at all the sensors and a
majority fusion rule. 50,000 trials per data point.

with the results shown in Table 4. Despite a very low signal-
to-noise ratio, the use of the extended parley algorithm still
leads to probabilities of error near those of the central proces-
sor. This is especially true as the number of sensors increases.
Note that in these cases, there is more of a difference in error
performance between the two early stopping rules for small
numbers of sensors. Yet, even insisting that eighty percent of
the sensors are in agreement, the number of iterations is still
significantly reduced.

BINARY SYMMETRIC CHANNEL

In this subsection, we examine the affect of channel errors
on the detection performance and the number of parleys. A
binary symmetric channel model is used to potentially cor-
rupt every transmitted bit. The crossover probability of the
channel ranges from 0.0001 up to 0.05. Recently, Reardon and
Kam [8] considered such communication errors for a parallel
binary architecture.

Table 5 shows the results for clusters of 5, 10, and 20 sen-
sors 2. The original one bit algorithm is able to maintain
a relatively constant probability of error, but at the cost of
increasingly larger number of parleys. When the crossover

2The results for zero BER use a different random number seed
from those in Table 2.

Sensors  Pr(e) || 1 bit SF

N 1.1 125 1.5

5 04125 | 4.19 | 2.82 254 2.39
10 0.3763 || 5.99 | 3.86 3.70 3.61
20 0.3271 792 | 461 4.54 4.1
50 0.2421 || 10.81 | 5.29 5.23 5.22
100 0.1633 || 13.21 | 5.62 5.53 5.52
200 0.0790 || 15.58 | 5.76 5.61 5.59
5 04223 | 4.19 | 2.11 142 1.06
10 03784 || 599 | 2.87 2.04 146
20 03309 || 792 | 3.49 2.74 2.08
50 0.2426 || 10.81 | 4.18 3.54 3.06
100 0.1633 || 13.21 | 4.64 3.97 3.58
200 0.0790 || 15.58 | 5.03 4.19 3.78

Table 4: Comparison of the average number of parleys
of the original algorithm [2] and the two bit parley al-
gorithm. The top half is for the 0.8 x N stopping rule,
while the bottom half is for the 0.6 x N stopping rule.
m = 2s = 0.2. 50,000 trials per data point.

probability exceeds 0.01, there is a sharp increase in the av-
erage number. The two bit parley algorithm is also capable
of maintaining a relatively constant error probability, while
preventing the exponential growth in the number of parleys.
While one could argue that more trials would be useful, espe-
cially for the lower bit error rates, the more interesting cases
are the high error rate ones.

N=5 N =10 N =20
BER | Pr(e) Num. | Pr(e) Num. | Pr(e) Num.
0 0.288 4.00 | 0.213 5.61 | 0.131 7.36
0.0001 | 0.288 4.03 | 0.213 5.67 | 0.133 7.52
0.001 0.289 4.26 | 0.212 6.19 | 0.131 8.49
0.01 0.291 5.74 | 0.217 9.62 | 0.135 16.07
0.05 0.294 9.24 | 0.224 21.03 | 0.139 42.17
0 0.288 2.50 | 0.216 3.42 | 0.132 3.96
0.0001 | 0.288 2.50 | 0.216 3.43 | 0.131 3.99
0.001 0.289 2.53 | 0.217 3.52 | 0.133 4.17
0.01 0.290 2.72 | 0.220 4.09 | 0.132 5.40
0.05 0.299 3.12 | 0.226 5.91 | 0.144 10.23

Table 5: Affect of channel bit error rate on the probability
of error and the average number of parleys. The top half
is for the one bit algorithm while the bottom half is for
the two bit algorithm with SF' = 1.5 and the 0.8 x N
stopping rule. m = 2s = 0.5. 100,000 trials per data
point.

NEYMAN-PEARSON CRITERION

Since one often does not know the a prior: probabilities of
the two hypotheses and choosing useful costs can be difficult,
a Neyman-Pearson criterion may be more suitable. Here we
briefly show that the two bit parley algorithm still reduces
the number of iterations compared to the original parley algo-
rithm, but with essentially no loss in performance. Figure 3
shows receiver operating curves for clusters of 5 and 10 sensors
with m = 2s = 0.5. The analytical curves are the same as in
Figure 2, and they are included to allow an easy comparison.
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Figure 3: Comparison of the ROCs. The one bit algo-
rithm is indicated by crosses; the two bit algorithm with
the 0.8 x N rule is indicated by diamonds and with the
0.6 x N rule by circles. SF = 1.5. m = 0.5. 50,000 trials
per data point.

First consider the 5 sensor case. The data for the original
parley algorithm and the two bit parley algorithm are nearly
overlapping, regardless of whether the 0.8 * NV or the 0.6 * NV
criterion is used. For the this reason, only the latter is shown.

The results are similar for the 10 sensor case. However as
seen in Figure 3, there is a bit of degradation for the 0.6 * NV
early stopping criterion. Using the 0.8 x N criterion, still with
SF = 1.5, improves the two bit ROC so that it is almost the
same as the one bit curve. Yet, both of them show a little
degradation compared to the central processor as the thresh-
old, A, moves away from a value of one. For the two bit al-
gorithm, the choice of the two quantization thresholds, A;m,z
and A,z based on the scale factor, is part of the cause of
this phenomenon. Even with this slightly suboptimal process-
ing, the overall results are quite good. Figure 4 shows the
receiver operating curves when the data transmitted among
the sensors uses a binary symmetric channel model with a
crossover probability of p = 0.001. Note that the performance
is effectively unchanged from that of an ideal channel.

Figure 5 shows the average number of parleys required as a
function of the central threshold, A, for communication among
the sensors over an ideal channel. As one can see, the maxi-
mum number of parleys occurs when the threshold is equal to
one. This is a suitable choice when the a prior: probabilities
are nearly equal and the costs are similar, i.e. the Bayesian
case. Please note that in all cases, the two bit algorithm leads
to substantial reductions. Figure 6 shows the average num-
ber of parleys for communication over the binary symmetric
channel with p = 0.001. There is a modest increase in the
average number of parleys for the one bit algorithm, while the
increase is almost negligible for the two bit algorithm. These
results are also consistent with those shown in Table 5.
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Figure 4: Comparison of the ROCs. The one bit algo-
rithm is indicated by crosses; the two bit algorithm with
the 0.8 « N rule is indicated by diamonds and with the
0.6 x N rule by circles. SF = 1.5. m = 0.5. 100,000
trials per data point. Binary Symmetric Channel with
crossover probability p = 0.001.

VI. CONCLUSIONS AND FUTURE STUDY

An extension to Swaszek’s and Willet’s algorithm can sub-
stantially reduce the average number of parleys, while main-
taining the probability of error almost equal to that of a cen-
tral processor. The proposed algorithm uses soft information,
and it is reasonably robust to communication channel errors.
Presently, work is continuing with improving the Neyman-
Pearson results for values of A further from one. Less heuris-
tic early stopping rules are being developed and evaluated.
Sequential extensions are also being studied.
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